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New requirement

• Gammatown County wants:

“In weekdays we need Alphatown rate (linear);

in weekends Betatown rate (progressive)”
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Exercise

“In weekdays we need Alphatown rate (linear);

in weekends Betatown rate (progressive)”

• Exercise: How?
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Same Analysis

• Model 1:

– Source tree copy

• Now three copies to maintain

• Model 2:

– Parametric

• Model 3:

– Polymorphic – but ???

• Model 4:

– Compositional – but how?
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But…

• I will return to the analysis shortly, but first…

• I have a problem!

– I want to do TDD – because automated tests feel good…

– But how can I write test first when the outcome of a GammaTown 

rate strategy… depends on the day of the week???
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Tricky Requirement

• The test case for AlphaTown:

• … but how does it look for GammaTown?
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Direct and Indirect Parameters

• The day of the week is called an indirect parameter to the 

calculateTime method

– It is not an instance variable of the object

– It is not a parameter to the method

– It cannot be set by our JUnit code 

• It is ‘set’ by the computer’s clock

– That is, a parameter set indirectly by something outside our JUnit test 

code…
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Solutions?

• So – what to do?

– Come in on weekends?

• Manual testing!

– Set the clock ?

• Manual testing!

• Messes up Gradle as it depends on the clock going forward!

– Refactor code to make Pay Station accept a Date object?

• No – pay stations must continuously ask for date objects every time 

a new coin is entered…

• I will return to this problem set soon…
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I initially do this in the book…



Polymorphic Solutions to

the GammaTown Challenge

Using class inheritance



Premise

• Let us assume that we have developed the polymorphic 

solution to handle BetaTown!

• That is: forget the Strategy based solution we did last 

time for the next analysis...
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Reviewing the Polymorphic

• So – how did the polymorphic solution look like:

– Make PayStationImpl abstract, calculateTime abstract

– Two subclasses, one for linear and one for progressive
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The Concrete Classes
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AlphaTown = Linear

BetaTown = 
Progressive



The Big Challenge

• How do I make a subclass

which has both these

algorithms?

– They are in two different classes!!!
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Model 3a: Multiple Inheritance

• Subclass and override!

• Could work in C++, but not Java(*) or C#;

– My experience with fork-join hierarchies in C++ are bad 
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If (isWeekend()) {

PSProgressive::calcTime(…);

} else {

PSLinear::calcTime(…);

}



Fork-Join Hierarchies

• This is a fork-join hierarchy

• Fork-join =

– A root class – that has

– Two subclasses – that

– A single class inherit from – that has

– Two subclasses – that

– …

• My experience is … bad…
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Model 3b: Direct Subclass

• Cut code from linear and progressive, paste into 

alternating… And we have multiple copies of code…
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Model 3c:Sub-sub Class

• Cut code from progressive, paste into alternating
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Code view
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Model 3d: Bubbling up/Superclass

• Make protected calculation methods in abstract 

PayStationImpl, and call these from Alternating

– This is a classic solution often seen in practice
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Code view

• The super class

• Alpha then becomes
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Code view

• Gamma is then

• Discussion

– No code duplication

– Exercise: what are the liabilities?
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Liabilities

• Superclass stability

– Tendency to modify super classes over and over again

• Superclass analyzability and cohesion

– Becomes a junk pile of methods over time

– The methods are unrelated to the superclass itself, it is just a 

convenient parking lot for them

– This is an example of an abstraction with little cohesion

– Grave yard of forgotten methods?
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Model 3e: Stations in Stations
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Model 3e: Stations in Stations

• The “pay stations in pay station” way:

– Create an gamma pay station containing both an alpha and beta 

pay station

• Exercise: Benefits and liabilities?
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Morale

• It simply does not work cleanly!

• I have never seen a polymorphic solution that handles 

this very simple requirement in a natural and concise 

way!
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(*) SideBar

• Multiple inheritance of implementation is evil IMO…

• Java 8 managed to sneak it in anyway 

– Default methods
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Do not use default methods 
for fork-join hierarchies. It is 

not its intended use!
(Library evolution is)



Compositional Variants



Premise

• Now, please reset your minds again!

• We now look at the compositional variant (strategy 

pattern) that we made the last time!
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Code View
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Model 4a: Parameter + compositional
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Model 4a: Parameter + compositional

• Liabilities

– Code change in the constructor

– Constructor has become really weird for alpha and beta

• Worse: we have just blown the whole idea!

– now the pay station has resumed the rate calculation 

responsibility 

– or even worse – the responsibility is distributed over several 

objects   

• The responsibility to know about rate calculations are now distributed into two 

objects – leading to lower analyzability

• leads to duplicated code, and bugs difficult to track.
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Model 4b: Copy and paste version

• Cut and paste the code into new strategy object

• Multiple maintenance problem 

– a bug in price calculation functionality must be corrected in two 

places – odds are you only remember one of them.
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GammaAlternatingRateStrategy
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Lesson Learned

• Often two variability techniques are used at the same 

time

– Polymorphic + parametric

– Polymorphic + source’code’copy

– …

• … Which somewhat masks there is a bit issue here

• Do the same thing, the same way !!!

– If your variability technique does not support it – it is 

because you are using the wrong technique ☺
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… on to a nice compositional 

solution: State pattern

Composition is doing the same thing

the same way



Compositional Idea

•  I identify some behavior that varies. 

– The rate calculation behavior is what must vary for Gammatown 

and this we have already identified.

•  I state a responsibility that covers the behavior that 

varies and encapsulate it by expressing it as an interface. 

– The RateStrategy interface already defines the responsibility to 

“Calculate parking time” by defining the method calculateTime.

•  I compose the resulting behavior by delegating the 

concrete behavior to subordinate objects. 

– This is the point that takes on a new meaning concerning our new 

requirement.
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Model 4

• Compose the behavior...

 

 That is: 

– the best object to calculate linear rate models has already been 

defined and tested – why not use its expertise ? Same goes with 

progressive rate.

– so let us make a small team – one object responsible for taking 

the decision; the two other responsible for the individual rate 

calculations.
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The Cartoon
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rate calculation request

Team leader

Rate Policy Expert

Linear

Rate Policy Expert

Progressive

1. check clock

2.delegate to expert
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Interpretation

• Note:

• From the Pay Station’s viewpoint the behavior of the 

”team leader” change according to the state of the clock! 
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rate calculation request

Pay Station
Team leader
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Clock State Define Behavior

• Reusing existing, well tested, classes...
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Code view
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In AlternatingRateStrategy:

In AlternatingRateStrategy: Construction

1. check clock,

choose expert to use

2. delegate to expert
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Analysis

• Consequence: 

– Minimal new code, thus very little to test 

• most classes are untouched, only one new is added.

– Change by addition, not modification

– No existing code is touched

• so no new testing

• no review

– Parameterization of constructor
• All models possible that differ in weekends...
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Roles revisited

• This once again emphasizes the importance of

–  Encapsulate what varies: the rate policy

–  Define well-defined responsibilities by interfaces

–  Only let objects communicate using the interfaces

• Then the respective roles (pay station / rate strategy) can be played 

by many difference concrete objects

• And each object is free to implement the responsibilities of the roles 

as it sees fit – like our new ‘team leader’ that does little on his 

own!

–  also to let most of the dirty job be done by others ☺

• Delegate concrete calculations to the two rate specialists
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The State Pattern



Analysis

• Yet another application of 3-1-2

– (but note that the argumentation this time was heavily focused on 

the  aspect: composing behavior by delegating to partial 

behavior)

• Rephrasing what the Gammatown pay system does:

– The rate policy algorithm alters its behavior according to the state 

of the system clock
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State Pattern

• State pattern intent

– Allow an object to alter its behavior when its internal state 

changes. The object will appear to change its class.

– The rate policy algorithm alters its behavior according to the state 

of the system clock

– Seen from the PayStationImpl the AlternatingRateStrategy object 

appears to change class because it changes behavior over the 

week.
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Roles

Context delegate to its 

current state object

• State specifies 

responsibilities of the 

behavior that varies 

according to state

• ConcreteState defines 

state specific behavior

• State changes?

– May be defined either in 

Context or in 

ConcreteState set

– That who defines it is less 

reusable
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Exercise

• Which object/interface fulfil which role in the pay station?

• Who is responsible for state changes?
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Benefits/Liabilities of State

• General

– State specific behavior is localized

• in a single ConcreteState object

– State changes are explicit

• as you just find the assignments of ‘currentState’

– Increased number of objects

• as always with compositional designs

• Compare common state machines:

– case INIT_STATE:

– case DIE_ROLL_STATE:

– case MOVE_CHECKERS_STATE:
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Examples

• All state machines can be modelled by the state pattern

– and looking for them there are a lot

– TCP Socket connection state

– any game has a state machine

– Protocols

– etc...
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Example: Turnstile
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Summary

• New requirement

– a case that screams for reusing existing and well-tested 

production code

– cumbersome to utilize the reuse potential especially in the sub-

classing case (deeper discussion in the book)

– but handled elegantly by compositional design

• think in terms of teams of objects playing different roles

– I derived the State pattern

• more general pattern handling state machines well
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