
Software Engineering

and Architecture

Deriving State Pattern

Combining Behavior

New requirement

• Gammatown County wants:

“In weekdays we need Alphatown rate (linear);

in weekends Betatown rate (progressive)”

Henrik Bærbak Christensen 2CS, AU

Exercise

“In weekdays we need Alphatown rate (linear);

in weekends Betatown rate (progressive)”

• Exercise: How?

Henrik Bærbak Christensen 3CS, AU

Same Analysis

• Model 1:

– Source tree copy

• Now three copies to maintain

• Model 2:

– Parametric

• Model 3:

– Polymorphic – but ???

• Model 4:

– Compositional – but how?

Henrik Bærbak Christensen 4CS, AU

But…

• I will return to the analysis shortly, but first…

• I have a problem!

– I want to do TDD – because automated tests feel good…

– But how can I write test first when the outcome of a GammaTown

rate strategy… depends on the day of the week???

Henrik Bærbak Christensen 5CS, AU

Tricky Requirement

• The test case for AlphaTown:

• … but how does it look for GammaTown?

Henrik Bærbak Christensen 6CS, AU

Direct and Indirect Parameters

• The day of the week is called an indirect parameter to the

calculateTime method

– It is not an instance variable of the object

– It is not a parameter to the method

– It cannot be set by our JUnit code

• It is ‘set’ by the computer’s clock

– That is, a parameter set indirectly by something outside our JUnit test

code…

Henrik Bærbak Christensen 7CS, AU

Solutions?

• So – what to do?

– Come in on weekends?

• Manual testing!

– Set the clock ?

• Manual testing!

• Messes up Gradle as it depends on the clock going forward!

– Refactor code to make Pay Station accept a Date object?

• No – pay stations must continuously ask for date objects every time

a new coin is entered…

• I will return to this problem set soon…

Henrik Bærbak Christensen 8CS, AU

I initially do this in the book…

Polymorphic Solutions to

the GammaTown Challenge

Using class inheritance

Premise

• Let us assume that we have developed the polymorphic

solution to handle BetaTown!

• That is: forget the Strategy based solution we did last

time for the next analysis...

CS, AU Henrik Bærbak Christensen 10

Reviewing the Polymorphic

• So – how did the polymorphic solution look like:

– Make PayStationImpl abstract, calculateTime abstract

– Two subclasses, one for linear and one for progressive

CS, AU Henrik Bærbak Christensen 11

abstract

The Concrete Classes

CS@AU Henrik Bærbak Christensen 12

AlphaTown = Linear

BetaTown =
Progressive

The Big Challenge

• How do I make a subclass

which has both these

algorithms?

– They are in two different classes!!!

CS@AU Henrik Bærbak Christensen 13

Model 3a: Multiple Inheritance

• Subclass and override!

• Could work in C++, but not Java(*) or C#;

– My experience with fork-join hierarchies in C++ are bad

Henrik Bærbak Christensen 14CS, AU

If (isWeekend()) {

PSProgressive::calcTime(…);

} else {

PSLinear::calcTime(…);

}

Fork-Join Hierarchies

• This is a fork-join hierarchy

• Fork-join =

– A root class – that has

– Two subclasses – that

– A single class inherit from – that has

– Two subclasses – that

– …

• My experience is … bad…

CS@AU Henrik Bærbak Christensen 15

Model 3b: Direct Subclass

• Cut code from linear and progressive, paste into

alternating… And we have multiple copies of code…

Henrik Bærbak Christensen 16CS, AU

Model 3c:Sub-sub Class

• Cut code from progressive, paste into alternating

Henrik Bærbak Christensen 17CS, AU

Code view

Henrik Bærbak Christensen 18CS, AU

Model 3d: Bubbling up/Superclass

• Make protected calculation methods in abstract

PayStationImpl, and call these from Alternating

– This is a classic solution often seen in practice

Henrik Bærbak Christensen 19CS, AU

Code view

• The super class

• Alpha then becomes

Henrik Bærbak Christensen 20CS, AU

Code view

• Gamma is then

• Discussion

– No code duplication

– Exercise: what are the liabilities?

Henrik Bærbak Christensen 21CS, AU

Liabilities

• Superclass stability

– Tendency to modify super classes over and over again

• Superclass analyzability and cohesion

– Becomes a junk pile of methods over time

– The methods are unrelated to the superclass itself, it is just a

convenient parking lot for them

– This is an example of an abstraction with little cohesion

– Grave yard of forgotten methods?

Henrik Bærbak Christensen 22CS, AU

Model 3e: Stations in Stations

Henrik Bærbak Christensen 23CS, AU

Model 3e: Stations in Stations

• The “pay stations in pay station” way:

– Create an gamma pay station containing both an alpha and beta

pay station

• Exercise: Benefits and liabilities?

Henrik Bærbak Christensen 24CS, AU

Morale

• It simply does not work cleanly!

• I have never seen a polymorphic solution that handles

this very simple requirement in a natural and concise

way!

CS, AU Henrik Bærbak Christensen 25

(*) SideBar

• Multiple inheritance of implementation is evil IMO…

• Java 8 managed to sneak it in anyway

– Default methods

CS@AU Henrik Bærbak Christensen 26

Do not use default methods
for fork-join hierarchies. It is

not its intended use!
(Library evolution is)

Compositional Variants

Premise

• Now, please reset your minds again!

• We now look at the compositional variant (strategy

pattern) that we made the last time!

CS, AU Henrik Bærbak Christensen 28

Code View

DAIMI Henrik Bærbak Christensen 29

Model 4a: Parameter + compositional

Henrik Bærbak Christensen 30CS, AU

Model 4a: Parameter + compositional

• Liabilities

– Code change in the constructor

– Constructor has become really weird for alpha and beta

• Worse: we have just blown the whole idea!

– now the pay station has resumed the rate calculation

responsibility

– or even worse – the responsibility is distributed over several

objects

• The responsibility to know about rate calculations are now distributed into two

objects – leading to lower analyzability

• leads to duplicated code, and bugs difficult to track.

Henrik Bærbak Christensen 31CS, AU

Model 4b: Copy and paste version

• Cut and paste the code into new strategy object

• Multiple maintenance problem

– a bug in price calculation functionality must be corrected in two

places – odds are you only remember one of them.

Henrik Bærbak Christensen 32

GammaAlternatingRateStrategy

CS, AU

Lesson Learned

• Often two variability techniques are used at the same

time

– Polymorphic + parametric

– Polymorphic + source’code’copy

– …

• … Which somewhat masks there is a bit issue here

• Do the same thing, the same way !!!

– If your variability technique does not support it – it is

because you are using the wrong technique ☺

CS@AU Henrik Bærbak Christensen 33

… on to a nice compositional

solution: State pattern

Composition is doing the same thing

the same way

Compositional Idea

• I identify some behavior that varies.

– The rate calculation behavior is what must vary for Gammatown

and this we have already identified.

• I state a responsibility that covers the behavior that

varies and encapsulate it by expressing it as an interface.

– The RateStrategy interface already defines the responsibility to

“Calculate parking time” by defining the method calculateTime.

• I compose the resulting behavior by delegating the

concrete behavior to subordinate objects.

– This is the point that takes on a new meaning concerning our new

requirement.

Henrik Bærbak Christensen 35CS, AU

Model 4

• Compose the behavior...

 That is:

– the best object to calculate linear rate models has already been

defined and tested – why not use its expertise ? Same goes with

progressive rate.

– so let us make a small team – one object responsible for taking

the decision; the two other responsible for the individual rate

calculations.

Henrik Bærbak Christensen 36CS, AU

The Cartoon

Henrik Bærbak Christensen 37

rate calculation request

Team leader

Rate Policy Expert

Linear

Rate Policy Expert

Progressive

1. check clock

2.delegate to expert

CS, AU

Interpretation

• Note:

• From the Pay Station’s viewpoint the behavior of the

”team leader” change according to the state of the clock!

Henrik Bærbak Christensen 38

rate calculation request

Pay Station
Team leader

CS, AU

Clock State Define Behavior

• Reusing existing, well tested, classes...

Henrik Bærbak Christensen 39CS, AU

Code view

Henrik Bærbak Christensen 40

In AlternatingRateStrategy:

In AlternatingRateStrategy: Construction

1. check clock,

choose expert to use

2. delegate to expert

CS, AU

Analysis

• Consequence:

– Minimal new code, thus very little to test

• most classes are untouched, only one new is added.

– Change by addition, not modification

– No existing code is touched

• so no new testing

• no review

– Parameterization of constructor
• All models possible that differ in weekends...

Henrik Bærbak Christensen 41CS, AU

Roles revisited

• This once again emphasizes the importance of

– Encapsulate what varies: the rate policy

– Define well-defined responsibilities by interfaces

– Only let objects communicate using the interfaces

• Then the respective roles (pay station / rate strategy) can be played

by many difference concrete objects

• And each object is free to implement the responsibilities of the roles

as it sees fit – like our new ‘team leader’ that does little on his

own!

– also to let most of the dirty job be done by others ☺

• Delegate concrete calculations to the two rate specialists

Henrik Bærbak Christensen 42CS, AU

The State Pattern

Analysis

• Yet another application of 3-1-2

– (but note that the argumentation this time was heavily focused on

the aspect: composing behavior by delegating to partial

behavior)

• Rephrasing what the Gammatown pay system does:

– The rate policy algorithm alters its behavior according to the state

of the system clock

Henrik Bærbak Christensen 44CS, AU

State Pattern

• State pattern intent

– Allow an object to alter its behavior when its internal state

changes. The object will appear to change its class.

– The rate policy algorithm alters its behavior according to the state

of the system clock

– Seen from the PayStationImpl the AlternatingRateStrategy object

appears to change class because it changes behavior over the

week.

Henrik Bærbak Christensen 45CS, AU

Roles

Context delegate to its

current state object

• State specifies

responsibilities of the

behavior that varies

according to state

• ConcreteState defines

state specific behavior

• State changes?

– May be defined either in

Context or in

ConcreteState set

– That who defines it is less

reusable
Henrik Bærbak Christensen 46CS, AU

Exercise

• Which object/interface fulfil which role in the pay station?

• Who is responsible for state changes?

Henrik Bærbak Christensen 47CS, AU

Benefits/Liabilities of State

• General

– State specific behavior is localized

• in a single ConcreteState object

– State changes are explicit

• as you just find the assignments of ‘currentState’

– Increased number of objects

• as always with compositional designs

• Compare common state machines:

– case INIT_STATE:

– case DIE_ROLL_STATE:

– case MOVE_CHECKERS_STATE:

Henrik Bærbak Christensen 48CS, AU

Examples

• All state machines can be modelled by the state pattern

– and looking for them there are a lot

– TCP Socket connection state

– any game has a state machine

– Protocols

– etc...

Henrik Bærbak Christensen 49CS, AU

Example: Turnstile

CS, AU Henrik Bærbak Christensen 50

Summary

• New requirement

– a case that screams for reusing existing and well-tested

production code

– cumbersome to utilize the reuse potential especially in the sub-

classing case (deeper discussion in the book)

– but handled elegantly by compositional design

• think in terms of teams of objects playing different roles

– I derived the State pattern

• more general pattern handling state machines well

Henrik Bærbak Christensen 51CS, AU

	Slide 1: Software Engineering and Architecture
	Slide 2: New requirement
	Slide 3: Exercise
	Slide 4: Same Analysis
	Slide 5: But…
	Slide 6: Tricky Requirement
	Slide 7: Direct and Indirect Parameters
	Slide 8: Solutions?
	Slide 9: Polymorphic Solutions to the GammaTown Challenge
	Slide 10: Premise
	Slide 11: Reviewing the Polymorphic
	Slide 12: The Concrete Classes
	Slide 13: The Big Challenge
	Slide 14: Model 3a: Multiple Inheritance
	Slide 15: Fork-Join Hierarchies
	Slide 16: Model 3b: Direct Subclass
	Slide 17: Model 3c:Sub-sub Class
	Slide 18: Code view
	Slide 19: Model 3d: Bubbling up/Superclass
	Slide 20: Code view
	Slide 21: Code view
	Slide 22: Liabilities
	Slide 23: Model 3e: Stations in Stations
	Slide 24: Model 3e: Stations in Stations
	Slide 25: Morale
	Slide 26: (*) SideBar
	Slide 27: Compositional Variants
	Slide 28: Premise
	Slide 29: Code View
	Slide 30: Model 4a: Parameter + compositional
	Slide 31: Model 4a: Parameter + compositional
	Slide 32: Model 4b: Copy and paste version
	Slide 33: Lesson Learned
	Slide 34: … on to a nice compositional solution: State pattern
	Slide 35: Compositional Idea
	Slide 36: Model 4
	Slide 37: The Cartoon
	Slide 38: Interpretation
	Slide 39: Clock State Define Behavior
	Slide 40: Code view
	Slide 41: Analysis
	Slide 42: Roles revisited
	Slide 43: The State Pattern
	Slide 44: Analysis
	Slide 45: State Pattern
	Slide 46: Roles
	Slide 47: Exercise
	Slide 48: Benefits/Liabilities of State
	Slide 49: Examples
	Slide 50: Example: Turnstile
	Slide 51: Summary

